
PROPOSITIONAL LOGIC (2)

based on

Huth & Ruan
Logic in Computer Science:
Modelling and Reasoning about Systems
Cambridge University Press, 2004

Russell & Norvig
Artificial Intelligence:
A Modern Approach
Prentice Hall, 2010

Natural deduction:
Or-elimination

If all of these conditions are true:
under the assumption that is true, is true
under the assumption that is true, is true
formula is true

then is true

Natural deduction:
Or-elimination

1. premise
2. premise
3. premise
4. assumption
5. e 1,4→
6. assumption
7. e 2,6→
8. e 3,4-5, 6-7

assumptions
for both cases
in the or

Now prove that

Natural deduction:
Not-elimination
If and are true, then the formula is a

contradiction / in conflict
One can conclude anything from a contradiction

1. premise
2. premise
3. e 1,2→
4. e 2,3
5. e 4

contradiction
found

anything can
be concluded from
a contradiction

Now prove that

Natural deduction:
Not-introduction
If the assumption that is true leads to a

contradiction, then is true

1. premise
2. assumption
3. e 1,2→
4. e 2,3
5. i 2-4

Now prove that

Natural deduction:
Overview
We saw rules for

And-introduction, and-elimination
Or-introduction, or-elimination
Not-introduction, not-elimination
Implication-introduction, implication-elimination
Double negation

the two latter rules are actually redundant

Natural deduction:
“Emulating” modus tolens

1. premise
2. premise
3. assumption
4. e 1,3→
5. e 2,4
6. i 3-5

Natural deduction:
“Emulating” double negation

1. premise
2. assumption
3. e 1,2
4. i 2-3

Natural deduction &
Semantic entailment

Reminder: it can be shown that the rules of natural
deduction are
sound
complete

Natural deduction is mostly used by humans
to prove entailment, but its use in computer programs

is rare.

Normal Forms
To efficiently process formulas in computer

programs, these programs often only accept restricted
types of formulas.
Clauses
Formulas in conjunctive normal form (CNF)
Formulas in disjunctive normal form (DNF)
Horn clauses

Clauses
Clauses are formulas consisting only of and

they can also be written using , (after) and → →
(before)→

an atom or its negation is called a literal

Clause without
positive literal

Clause without
negative literal

Empty clause
is considered
false

(brackets within a
clause are not allowed!)

Conjunctive & Disjunctive
Normal Form
A formula is in conjunctive normal form if it

consists of a conjunction of clauses

“conjunction of disjunctions”
A formula is in disjunctive normal form if it

consists of a disjunction of conjunctions

Conjunctive & Disjunctive
Normal Form
The transformation from CNF to DNF is exponential

Conjunctive Normal Form
Any formula can be written in CNF

(consequently, any formula can also be written in DNF,
but the DNF formula may be exponentially larger)

Checking Satisfiability of
Formulas in DNF
Checking DNF satisfiability is easy: process one

conjunction at a time; if at least one conjunction is
not a contradiction, the formula is satisfiable

 → DNF satisfiability can be decided in polynomial time

Conversion to DNF is not feasible in most cases
(exponential blowup)

Checking Satisfiability of
Formulas in CNF
No polynomial algorithm is known for checking the

satisfiability of arbitrary CNF formulas
Example: we could use such an algorithm to solve graph coloring with
k colors

• for each node i, create a formula

indicating that each node i must have a color
• for each node i and different pair of colors c1 and c2, create a formula

indicating a node may not have more than 1 color
• for each edge, create k formulas

indicating that a pair connected nodes i and j may not both
have color c at the same time

Resolution Rule

Given two clauses and ,
where represent literals
and it holds that , then it holds that

Essential in most satisfiability solvers for CNF formulas is the
resolution rule for clauses:

Example:

Proof for Resolution

1. premise
2. premise
3. assumption
4. i 3
5. assumption
6. e 2,5→
7. i 6
8. e 1,3-4, 5-7

on an example

Completeness of
Resolution
If it holds that for clauses

 (i.e. the clauses are a contradiction), then
we can derive from
by repeated application of the resolution rule

How to find the resolution steps in general?
For some types of clauses it is easier...

Definite clauses &
Horn clauses
A definite clause is a clause with exactly one

positive literal

A horn clause is a clause with at most one positive
literal

A clause with one positive literal is called a fact

Forward chaining for
Definite clauses
The forward chaining algorithm calculates facts

that can be entailed from a set of definite clauses
C = initial set of definite clauses
repeat

if there is a clause p1,...,pn q→ in C where p1,...,pn are
facts in C then
add fact q to C

end if
until no fact could be added
return all facts in C

Resolution

This algorithm is complete for facts: any fact that is entailed,
will be derived.

Forward chaining for
Horn clauses
We now also allow to add and other clauses

without positive literals to C
We stop immediately when is found, and return

that the set of formulas is contradictory.

Note:
1) a set of definite clauses is always satisfiable.
2) we can decide in linear time whether a set of Horn clauses is satisfiable.

Deciding entailment
for Horn clauses
Suppose we would like to know whether

where are Horn clauses; then it suffices
to determine whether

(we can show this by means of introduction)→
As entailment of facts can be decided in linear time,

Horn clause entailment can be determined in linear
time as well

Deciding satisfiability of
CNF formulas: DPLL
The DPLL algorithm for deciding satisfiability was

proposed by Davis, Putman, Logeman and Loveland
(1960, 1962)

General ideas:
we perform depth-first over the space of all possible

valuations
based on a partial valuation, we simplify the formula

to remove redundant literals
based on the formula, we fix the valuation of as many

atoms as possible

DPLL: Simplification
If the valuation of atom p is “true”

every clause in which literal p occurs, is removed
from every clause in which p is negated, is removed

Similarly, if the valuation of atom p is “false”
every clause in which literal occurs, is removed
from every clause in which p occurs, literal p is removed

similar to resolution

DPLL: Simplification
Special case 1 of simplification is when an empty clause

is obtained, i.e. the clause

in this case the current valuation can never be extended
to a valuation that satisfies the formula

Special case 2 of simplification is when the empty CNF
formula is obtained, i.e. the formula

in this case we have found a satisfying valuation

DPLL: Pure symbols
If an atom always has the same sign in a formula (i.e.,

the literals p and do not occur at the same time),
the atom is called pure. We fix the valuation of a pure
atom to the value indicated by this sign

Note: we can apply simplification afterwards and
remove redundant clauses

DPLL: Unit clauses
If a clause consists of only one literal (positive or

negative), this clause is called a unit clause. We fix the
valuation of an atom occurring in a unit clause to the
value indicated by the sign of the literal.

Also here, we apply simplification afterwards; after
simplification, we may have new unit clauses, which we
can use again; this process is called unit propagation

DPLL Algorithm
DPLL (valuations V, formula φ)

φ' = simplification of φ based on V
if φ' is an empty formula then return true
if φ' contains the empty clause then return false
if φ' contains a pure atom p with sign v then

return DPLL(V ∪ {p=v}, φ')
if φ' contains a unit clause for atom p with sign v then

return DPLL(V ∪ {p=v}, φ')
let p be an arbitrary atom occurring in φ'
if DPLL(V ∪ {p=true}, φ') then return true
else return DPLL(V ∪ {p=false}, φ')

Optimizations of DPLL
Component analysis: if the clauses can be

partitioned such that variables are not shared
between clauses in different partitions, we solve the
partitions independently

Value and variable ordering: when choosing the
next atom to fix, try to be clever (i.e. pick one that
occurs in many clauses)

component 1 component 2

Optimizations of DPLL
Clause learning: if a contradiction is found, try to

find out which assignments caused this contradiction,
and add a clause (entailed by the original CNF
formula) to avoid this combination of assignments in
the future

Example

Note: no unit propagation or pure literals present,
branching necessary.

Optimizations for DPLL

No propagation possible, branch with p=true

No propagation possible, branch with q=true

No propagation possible, branch with r=true

Conflict found in t apply resolution on → t for the original
versions of conflicting clauses

 → clause is entailed by the original formula, add
as learned clause to original formula apply propagation on →
this formula new → p=true, q=true, r=false → search stops

Optimizations for DPLL

Random restarts: if the search is unsuccessful too
long, stop the search, and start from scratch with
learned clauses (and possibly a different
variable/value ordering)

Clever indexing: use heavily optimized data
structures for storing clauses, atoms, and lists of
clauses in which atoms occur

Portfolios: run several different solvers for a short
time; use data gathered from these runs to select the
final solver to execute

Applications of
SAT solvers
Model checking
Planning
Scheduling
Experiment design
Protocol design (networks)
Multi-agent systems
E-commerce
Software package management
Learning automata
...

http://www.youtube.com/watch?v=0gt503wK7AI

http://www.youtube.com/watch?v=0gt503wK7AI

First order logic
Essentially, first order logic adds variables in logic

formulas

Assume we have three cats (Anna, Bella, Cat), and cats have
tails.

In propositional logic, we could write:
iscatAnna, iscatBella, iscatCat, iscatAnna hastailAnna,→
iscatBella hastailBella, iscatCat hastailCat.→ →

In first order logic, we would write:
iscat(anna), iscat(bella), iscat(anna), X iscat(X) hastail(X)→

	Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

