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Natural deduction:
Or-elimination

If all of these conditions are true:
under the assumption that      is true,      is true
under the assumption that      is true,      is true
formula               is true

then       is true



Natural deduction:
Or-elimination

1. premise
2. premise
3.    premise
4. assumption
5. e 1,4→
6. assumption
7. e 2,6→
8.    e 3,4-5, 6-7

assumptions
for both cases
in the or

Now prove that



Natural deduction:
Not-elimination
If         and          are true, then the formula is a 

contradiction / in conflict
One can conclude anything from a contradiction

1. premise
2. premise
3.    e 1,2→
4.    e 2,3
5.    e 4

contradiction
found

anything can
be concluded from
a contradiction

Now prove that



Natural deduction:
Not-introduction
If the assumption that      is true leads to a 

contradiction, then          is true

1. premise
2. assumption
3.    e 1,2→
4.    e 2,3
5.    i 2-4

Now prove that



Natural deduction:
Overview
We saw rules for

And-introduction, and-elimination
Or-introduction, or-elimination
Not-introduction, not-elimination
Implication-introduction, implication-elimination
Double negation

the two latter rules are actually redundant



Natural deduction:
“Emulating” modus tolens

1. premise
2. premise
3.    assumption
4. e 1,3→
5.    e 2,4
6.    i 3-5



Natural deduction:
“Emulating” double negation

1. premise
2. assumption
3.       e 1,2
4.    i 2-3



Natural deduction &
Semantic entailment

Reminder: it can be shown that the rules of natural 
deduction are 
sound
complete

Natural deduction is mostly used by humans
to prove entailment, but its use in computer programs

is rare.



Normal Forms
To efficiently process formulas in computer 

programs, these programs often only accept restricted 
types of formulas.
Clauses
Formulas in conjunctive normal form (CNF)
Formulas in disjunctive normal form (DNF)
Horn clauses



Clauses
Clauses are formulas consisting only of        and

they can also be written using ,      (after ) and      → →
(before )→

an atom or its negation is called a literal

Clause without 
positive literal

Clause without 
negative literal

Empty clause
is considered 
false

(brackets within a
clause are not allowed!)



Conjunctive & Disjunctive
Normal Form
A formula is in conjunctive normal form if it 

consists of a conjunction of clauses

“conjunction of disjunctions”
A formula is in disjunctive normal form if it 

consists of a disjunction of conjunctions



Conjunctive & Disjunctive
Normal Form
The transformation from CNF to DNF is exponential



Conjunctive Normal Form
Any formula can be written in CNF

(consequently, any formula can also be written in DNF, 
but the DNF formula may be exponentially larger)



Checking Satisfiability of
Formulas in DNF
Checking DNF satisfiability is easy: process one 

conjunction at a time; if at least one conjunction is 
not a contradiction, the formula is satisfiable

 → DNF satisfiability can be decided in polynomial time

Conversion to DNF is not feasible in most cases 
(exponential blowup)



Checking Satisfiability of 
Formulas in CNF
No polynomial algorithm is known for checking the 

satisfiability of arbitrary CNF formulas
Example: we could use such an algorithm to solve graph coloring with 
k colors

• for each node i, create a formula

indicating that each node i must have a color
• for each node i and different pair of colors c1 and c2, create a formula

indicating a node may not have more than 1 color
• for each edge, create k formulas

indicating that a pair connected nodes i and j may not both 
have color c at the same time



Resolution Rule

Given two clauses                           and                              ,
where                                             represent literals 
and it holds that                     , then it holds that

Essential in most satisfiability solvers for CNF formulas is the 
resolution rule for clauses:

Example:



Proof for Resolution

1. premise
2. premise
3.    assumption
4.    i 3
5. assumption
6. e 2,5→
7.    i 6
8.    e 1,3-4, 5-7

on an example



Completeness of 
Resolution
If it holds that                                 for clauses

                      (i.e. the clauses are a contradiction), then 
we can derive        from  
by repeated application of the resolution rule

How to find the resolution steps in general?
For some types of clauses it is easier... 



Definite clauses &
Horn clauses
A definite clause is a clause with exactly one 

positive literal

A horn clause is a clause with at most one positive 
literal

A clause with one positive literal is called a fact



Forward chaining for
Definite clauses
The forward chaining algorithm calculates facts 

that can be entailed from a set of definite clauses
C = initial set of definite clauses
repeat

if there is a clause p1,...,pn  q→  in C where p1,...,pn are 
facts in C then
add fact q to C

end if
until no fact could be added
return all facts in C

Resolution

This algorithm is complete for facts: any fact that is entailed,
will be derived.



Forward chaining for 
Horn clauses
We now also allow to add        and other clauses 

without positive literals to C
We stop immediately       when is found, and return 

that the set of formulas is contradictory.

Note: 
1) a set of definite clauses is always satisfiable.
2) we can decide in linear time whether a set of Horn clauses is satisfiable.



Deciding entailment
for Horn clauses
Suppose we would like to know whether

where                         are Horn clauses; then it suffices 
to determine whether

(we can show this by means of  introduction)→
As entailment of facts can be decided in linear time, 

Horn clause entailment can be determined in linear 
time as well



Deciding satisfiability of 
CNF formulas: DPLL
The DPLL algorithm for deciding satisfiability was 

proposed by Davis, Putman, Logeman and Loveland 
(1960, 1962) 

General ideas:
we perform depth-first over the space of all possible 

valuations
based on a partial valuation, we simplify the formula 

to remove redundant literals
based on the formula, we fix the valuation of as many 

atoms as possible



DPLL: Simplification
If the valuation of atom p is “true”

every clause in which literal p occurs, is removed
from every clause in which p is negated,        is removed

Similarly, if the valuation of atom p is “false”
every clause in which literal        occurs, is removed
from every clause in which p occurs, literal p is removed

similar to resolution



DPLL: Simplification
Special case 1 of simplification is when an empty clause 

is obtained, i.e. the clause 

in this case the current valuation can never be extended 
to a valuation that satisfies the formula

Special case 2 of simplification is when the empty CNF 
formula is obtained, i.e. the formula

in this case we have found a satisfying valuation



DPLL: Pure symbols
If an atom always has the same sign in a formula (i.e., 

the literals p and          do not occur at the same time), 
the atom is called pure. We fix the valuation of a pure  
atom to the value indicated by this sign

Note: we can apply simplification afterwards and 
remove redundant clauses



DPLL: Unit clauses
If a clause consists of only one literal (positive or 

negative), this clause is called a unit clause. We fix the 
valuation of an atom occurring in a unit clause to the 
value indicated by the sign of the literal.

Also here, we apply simplification afterwards; after 
simplification, we may have new unit clauses, which we 
can use again; this process is called unit propagation



DPLL Algorithm
DPLL ( valuations V, formula φ )

φ' = simplification of φ based on V
if φ' is an empty formula then return true
if φ' contains the empty clause then return false
if φ' contains a pure atom p with sign v then 

return DPLL(V ∪ {p=v}, φ')
if φ' contains a unit clause for atom p with sign v then 

return DPLL(V ∪ {p=v}, φ')
let p be an arbitrary atom occurring in  φ'
if DPLL(V ∪ {p=true}, φ') then return true
else return DPLL(V ∪ {p=false}, φ')



Optimizations of DPLL
Component analysis: if the clauses can be 

partitioned such that variables are not shared 
between clauses in different partitions, we solve the 
partitions independently

Value and variable ordering: when choosing the 
next atom to fix, try to be clever (i.e. pick one that 
occurs in many clauses) 

component 1 component 2



Optimizations of DPLL
Clause learning: if a contradiction is found, try to 

find out which assignments caused this contradiction, 
and add a clause (entailed by the original CNF 
formula) to avoid this combination of assignments in 
the future

Example

Note: no unit propagation or pure literals present,
branching necessary.



Optimizations for DPLL

No propagation possible, branch with p=true

No propagation possible, branch with q=true

No propagation possible, branch with r=true

Conflict found in t  apply resolution on → t for the original
versions of conflicting clauses

 → clause         is entailed by the original formula, add
as learned clause to original formula  apply propagation on →
this formula new  → p=true, q=true, r=false  → search stops



Optimizations for DPLL

Random restarts: if the search is unsuccessful too 
long, stop the search, and start from scratch with 
learned clauses (and possibly a different 
variable/value ordering)

Clever indexing: use heavily optimized data 
structures for storing clauses, atoms, and lists of 
clauses in which atoms occur

Portfolios: run several different solvers for a short 
time; use data gathered from these runs to select the 
final solver to execute



Applications of 
SAT solvers
Model checking
Planning
Scheduling
Experiment design
Protocol design (networks)
Multi-agent systems
E-commerce
Software package management
Learning automata
...

http://www.youtube.com/watch?v=0gt503wK7AI

http://www.youtube.com/watch?v=0gt503wK7AI


First order logic
Essentially, first order logic adds variables in logic 

formulas

Assume we have three cats (Anna, Bella, Cat), and cats have 
tails. 

In propositional logic, we could write:
iscatAnna, iscatBella, iscatCat, iscatAnna  hastailAnna,→
iscatBella  hastailBella, iscatCat  hastailCat.→ →

In first order logic, we would write:
iscat(anna), iscat(bella), iscat(anna),      X iscat(X) hastail(X)→
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